63 research outputs found

    Reward circuitry is perturbed in the absence of the serotonin transporter

    Get PDF
    The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately involved in normal physiological functioning of the brain and implicated in numerous pathological conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT knock-out mouse. Employing manganese-enhanced MRI, we injected Mn^(2+) into the prefrontal cortex and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas (substantia nigra, ventral tegmental area, and RaphĆ© nuclei) directly involved in the reward circuit. Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal mice were detected by MRI. These findings point to modulation of the limbic corticalā€“ventral striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce behavioral changes also alter the functional anatomy of the reward circuitry in which all the monoamine systems are involved

    Live imaging of neuronal connections by magnetic resonance: Robust transport in the hippocampalā€“septal memory circuit in a mouse model of Down syndrome

    Get PDF
    Connections from hippocampus to septal nuclei have been implicated in memory loss and the cognitive impairment in Down syndrome (DS). We trace these connections in living mice by Mn^(2+) enhanced 3D MRI and compare normal with a trisomic mouse model of DS, Ts65Dn. After injection of 4 nl of 200 mM Mn^(2+) into the right hippocampus, Mn^(2+) enhanced circuitry was imaged at 0.5, 6, and 24 h in each of 13 different mice by high resolution MRI to detect dynamic changes in signal over time. The pattern of Mn^(2+) enhanced signal in vivo correlated with the histologic pattern in fixed brains of co-injected 3kD rhodamineā€“dextranā€“amine, a classic tracer. Statistical parametric mapping comparing intensity changes between different time points revealed that the dynamics of Mn2+ transport in this pathway were surprisingly more robust in DS mice than in littermate controls, with statistically significant intensity changes in DS appearing at earlier time points along expected pathways. This supports reciprocal alterations of transport in the hippocampal-forebrain circuit as being implicated in DS and argues against a general failure of transport. This is the first examination of in vivo transport dynamics in this pathway and the first report of elevated transport in DS

    Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals

    Get PDF
    Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-Āµm^3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse

    Increased anatomical detail by in vitro MR microscopy with a modified Golgi impregnation method

    Get PDF
    Golgi impregnation is unique in its ability to display the dendritic trees and axons of large numbers of individual neurons by histology. Here we apply magnetic resonance microscopy to visualize the neuroanatomy of animal models by combining histologic fixation chemistry with paramagnetic contrast agents. Although there is some differential uptake of the standard small-molecular-weight contrast agents by different tissue types, detailed discrimination of tissue architecture in MR images does not approach that of standard histology. Our modified Golgi impregnation method significantly increases anatomic detail in magnetic resonance microscopy images. Fixed mouse brains were treated with a solution containing a paramagnetic contrast agent (gadoteridol) and potassium dichromate. Results demonstrate a specific contrast enhancement likely due to diamagnetic hexavalent chromium undergoing tissue specific reduction to paramagnetic trivalent chromium. This new method dramatically improves neuroanatomical contrast compared to conventional fixation, displaying detail approximating that of histologic specimens at low (4Ɨ) magnification

    Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI)

    Get PDF
    MEMRI offers the exciting possibility of tracing neuronal circuits in living animals by MRI. Here we use the power of mouse genetics and the simplicity of the visual system to test rigorously the parameters affecting Mn^(2+) uptake, transport and trans-synaptic tracing. By measuring electrical response to light before and after injection of Mn^(2+) into the eye, we determine the dose of Mn^(2+) with the least toxicity that can still be imaged by MR at 11.7 T. Using mice with genetic retinal blindness, we discover that electrical activity is not necessary for uptake and transport of Mn^(2+) in the optic nerve but is required for trans-synaptic transmission of this tracer to distal neurons in this pathway. Finally, using a kinesin light chain 1 knockout mouse, we find that conventional kinesin is a participant but not essential to neuronal transport of Mn^(2+) in the optic tract. This work provides a molecular and physiological framework for interpreting data acquired by MEMRI of circuitry in the brain

    Decoupling the Effects of the Amyloid Precursor Protein From Amyloid-Ī² Plaques on Axonal Transport Dynamics in the Living Brain

    Get PDF
    Amyloid precursor protein (APP) is the precursor to AĪ² plaques. The cytoplasmic domain of APP mediates attachment of vesicles to molecular motors for axonal transport. In APP-KO mice, transport of MnĀ²āŗ is decreased. In old transgenic mice expressing mutated human (APP^(SwInd)) linked to Familial Alzheimerā€™s Disease, with both expression of APP^(SwInd) and plaques, the rate and destination of MnĀ²āŗ axonal transport is altered, as detected by time-lapse manganese-enhanced magnetic resonance imaging (MEMRI) of the brain in living mice. To determine the relative contribution of expression of APP^(SwInd) versus plaque on transport dynamics, we developed a Tet-off system to decouple expression of APP^(SwInd) from plaque, and then studied hippocampal to forebrain transport by MEMRI. Three groups of mice were compared to wild-type (WT): Mice with plaque and APP^(SwInd) expression; mice with plaque but suppression of APP^(SwInd) expression; and mice with APP^(SwInd) suppressed from mating until 2 weeks before imaging with no plaque. MR images were captured before at successive time points after stereotactic injection of MnĀ²āŗ (3ā€“5 nL) into CA3 of the hippocampus. Mice were returned to their home cage between imaging sessions so that transport would occur in the awake freely moving animal. Images of multiple mice from the three groups (suppressed or expressed) together with C57/B6J WT were aligned and processed with our automated computational pipeline, and voxel-wise statistical parametric mapping (SPM) performed. At the conclusion of MR imaging, brains were harvested for biochemistry or histopathology. Paired T-tests within-group between time points (p = 0.01 FDR corrected) support the impression that both plaque alone and APP^(SwInd) expression alone alter transport rates and destination of MnĀ²āŗ accumulation. Expression of APP^(SwInd) in the absence of plaque or detectable AĪ² also resulted in transport defects as well as pathology of hippocampus and medial septum, suggesting two sources of pathology occur in familial Alzheimerā€™s disease, from toxic mutant protein as well as plaque. Alternatively mice with plaque without APP^(SwInd) expression resemble the human condition of sporadic Alzheimerā€™s, and had better transport. Thus, these mice with APP^(SwInd) expression suppressed after plaque formation will be most useful in preclinical trials

    A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head

    Get PDF
    Background: Magnetic resonance imaging (MRI) is a well-developed technique in neuroscience. Limitations in applying MRI to rodent models of neuropsychiatric disorders include the large number of animals required to achieve statistical significance, and the paucity of automation tools for the critical early step in processing, brain extraction, which prepares brain images for alignment and voxel-wise statistics. New Method: This novel timesaving automation of template-based brain extraction (ā€œskull-strippingā€) is capable of quickly and reliably extracting the brain from large numbers of whole head images in a single step. The method is simple to install and requires minimal user interaction. Results: This method is equally applicable to different types of MR images. Results were evaluated with Dice and Jacquard similarity indices and compared in 3D surface projections with other stripping approaches. Statistical comparisons demonstrate that individual variation of brain volumes are preserved. Comparison with Existing Methods: A downloadable software package not otherwise available for extraction of brains from whole head images is included here. This software tool increases speed, can be used with an atlas or a template from within the dataset, and produces masks that need little further refinement. Conclusions: Our new automation can be applied to any MR dataset, since the starting point is a template mask generated specifically for that dataset. The method reliably and rapidly extracts brain images from whole head images, rendering them useable for subsequent analytical processing. This software tool will accelerate the exploitation of mouse models for the investigation of human brain disorders by MRI

    Quantitative measurements and modeling of cargoā€“motor interactions during fast transport in the living axon

    Get PDF
    Author Posting. Ā© IOP Publishing, 2012. This article is posted here by permission of IOP Publishing for personal use, not for redistribution. The definitive version was published in Physical Biology 9 (2012): 055005, doi:10.1088/1478-3975/9/5/055005.The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of theseā€”phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane proteinā€”have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargoā€“motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer's, Huntington and Parkinson's diseases.This work was supported in part by NINDS RO1 NS046810 and RO1 NS062184 (ELB), NIGMS RO1 GM47368 (ELB), the Physical Sciences in Oncology Center grant U54CA143837 (VC), NIGMS K12GM088021 (JP), and NSF IGERT DGE-0549500 (PES). ELB and VC also received pilot project funds from the UNM Center for Spatiotemporal modeling, funded by NIGMS, P50GM08273, which also supported AC.2013-09-2
    • ā€¦
    corecore